Arc-Disjoint Paths and Trees in 2-Regular Digraphs
نویسندگان
چکیده
An out-(in-)branching B s (B − s ) rooted at s in a digraph D is a connected spanning subdigraph of D in which every vertex x 6= s has precisely one arc entering (leaving) it and s has no arcs entering (leaving) it. We settle the complexity of the following two problems: • Given a 2-regular digraph D, decide if it contains two arc-disjoint branchings B u , B − v . • Given a 2-regular digraph D, decide if it contains an out-branching B u such that D remains connected after removing the arcs of B u . Both problems are NP-complete for general digraphs [1, 5]. We prove that the first problem remains NPcomplete for 2-regular digraphs, whereas the second problem turns out to be polynomial when we do not prescribe the root in advance. We also prove that, for 2-regular digraphs, the latter problem is in fact equivalent to deciding if D contains two arc-disjoint out-branchings. We generalize this result to k-regular digraphs where we want to find a number of pairwise arc-disjoint spanning trees and out-branchings such that there are k in total, again without prescribing any roots.
منابع مشابه
Disjoint paths in arborescences
An arborescence in a digraph is a tree directed away from its root. A classical theorem of Edmonds characterizes which digraphs have λ arc-disjoint arborescences rooted at r. A similar theorem of Menger guarantees λ strongly arc disjoint rv-paths for every vertex v, where “strongly” means no two paths contain a pair of symmetric arcs. We prove that if a directed graph D contains two arc-disjoin...
متن کاملHighly arc-transitive digraphs – counterexamples and structure∗
We resolve two problems of [Cameron, Praeger, and Wormald – Infinite highly arc transitive digraphs and universal covering digraphs, Combinatorica 1993]. First, we construct a locally finite highly arc-transitive digraph with universal reachability relation. Second, we provide constructions of 2-ended highly arc transitive digraphs where each ‘building block’ is a finite bipartite graph that is...
متن کاملComplexity of Paths, Trails and Circuits in Arc-Colored Digraphs
We deal with different algorithmic questions regarding properly arc-colored s-t paths, trails and circuits in arc-colored digraphs. Given an arc-colored digraph D with c ≥ 2 colors, we show that the problem of maximizing the number of arc disjoint properly arc-colored s-t trails can be solved in polynomial time. Surprisingly, we prove that the determination of one properly arc-colored s-t path ...
متن کاملComplete classification of tournaments having a disjoint union of directed paths as a minimum feedback arc set
A feedback arc set of a digraph is a set of arcs whose reversal makes the resulting digraph acyclic. Given a tournament with a disjoint union of directed paths as a feedback arc set, we present necessary and sufficient conditions for this feedback arc set to have minimum size. We will present a construction for tournaments where the difference between the size of a minimum feedback arc set and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 161 شماره
صفحات -
تاریخ انتشار 2013